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Abstract 

The kinetic theory of waves in an infinite plasma in a 

uniform, constant magnetic field predicts that radiation near the 

cyclotron frequency in a sufficiently non-thermal plasma may 

grow in time, One effect which can cause such growth or negative 

cyclotron resonance absorption of radiation which propagates 

perpendicular to the magnetic field direction is the relativistic 

energy dependence of the electron's mass. Another is the energy 

dependence of the electron-atom collision cross section for low 

energy electrons in a neutral gas background. The cyclotron 

resonance absorption of microwave energy by monoenergetic electrons 

which drift through a cavity resonator has been measured in order 

to verify these predictions. In each case the observed absorption 

spectra are similar to those calculated in a perturbation theo- 

retical solution of the Boltzmann equation treating the cyclotron 

resonance interaction between the electron beam and the bounded 

standing wave fields of the cavity resonator. An experiment 

which exhibits the radiative response in time of a weakly 

relativistic, monoenergetic electron ensemble to a short pulse 

of cyclotron resonance radiation is also described. The radiation 

calculated in an exact solution of the Boltzmann equation is 

found to occur in repetitive bursts of diminishing amplitude 

following the stimulating pulse, Experiment and theory are 

observed to be in qualitative agreement. 
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1. 

I. Introduction 

Preliminary Remarks 

In the early work on the dispersion and absorption of 

electromagnetic radiation by dielectrics, the medium was often 

considered to consist of a collection of fixed, microscopic. 

classical oscillators which reradiated when driven by time 

varying electromagnetic fields. For some time thereafter 

classical models were forced out of style by more successful 

quantum mechanical treatments. The interaction of a system of 

free charged particles with electromagnetic radiation, a problem 

which in the low particle density limit is quite accurately 

described in classical terms, was largely ignored. Recent 

activity in the field of plasma physics, however, has yielded 

solutions to a variety of problems regarding the electromagnetic 

behavior of free charged particle systems. It is to the experi- 

mental verification of predictions concerning one class of such 

interactions that the research to be described here has been 

directed . 
The interactions in this class fall under the general heading 

of cyclotron resonance phenomena. Cyclotron resonance occurs 

when a charged particle executing circular (or nearly circular) 

motion in a constant magnetic field is coupled strongly to 

radiation fields that oscillate at a frequency near the gyration 

frequency of the particle motion. Strong coupling can also occur 

at multiples of the gyration frequency. Each charged particle 

can be considered as one of many little current oscillators whose 
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~~ ~ 

amplitudes and phases as well as positions are distributed 

according to a distribution function which describes the density 

of particles in position and momentum space. 

The cyclotron resonance phenomena considered in this work 

pertain only to the coupling between radiation fields and 

electrons which obey single particle classical dynamics under the 

influence of a uniform constant magnetic field and the electric 

and magnetic radiation fields. The medium is tacitly assumed 

to be uncharged. Physically, a positive charge neutralizing 

background that does not interact with the radiation fields is 

imagined to coexist with the electrons. 

The distribution function f(;,l,t) which specified a 

statistical knowledge of the electron motion is the normalized 

electron density in a single particle phase space. It obeys 

the Boltzmann equation 

The collisions made by electrons of charge e, mass m, velocity IT, 

momentum 2 and position 2 are accounted for in the collision 

term on the right. The fields obey Maxwell's equations. 

Exhaustive theoretical studies of the interaction of small 

amplitude radiation fields with this type of electron plasma 

have been accomplished in recent years. Methods for classifying 

the various possible modes of radiation and for obtaining their 

dispersion relations have been developed. 

circumstances the dispersion relation for a particular type of 

Under certain 
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radiation field predicts that the wave will grow in time. 

least two such possibilities exist for radiation near the gyro- 

frequency of the plasma electrons. The first arises in connection 

with the anharmonic nature of the motion of a relativistic 

electron in a magnetic field, and the second is predicted for 

plasmas consisting of electrons that collide with neutral atoms 

if the collision frequency is sufficiently energy dependent. 

Such negative absorption phenomena will only occur in non-equilibrium 

plasmas. *2 

functions in the experiments which comprise this work has 

therefore been of fundamental concern. 

At 

The generation of non-equilibrium distribution 

In this chapter the simultaneous solution of the Boltzmann 

equation and Maxwell's equations using a method introduced by 

Bernstein? t o  obtain a general dispersion relation for electro- 

magnetic wave propagation in unbounded plasmas will be summarized. 

The calculation is well known and has appeared in recent texts 

on plasma physics. 4 s 5  The dispersion relation will be specialized 

to give the growth or damping rates due to the cyclotron resonance 

interaotion. 

The original part of this work begins with the second chapter 

where an experiment which exhibits negative cyclotron resonance 

absorption by relativistic electrons is described. The collisional 

effect is studied in the fourth chapter. More precise theories 

for the relativistic and collisional negative cyclotron resonance 

absorption phenomena that are experimentally studied are also 

offered. In the third chapter an experiment which exhibits the 

radiative response of a monoenergetic, relativistic ensemble of 
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electrons to a pulse of radiation at cyclotron resonance is 

described. The experiment could be considered noteworthy 

because of its illuminating relation with respect to the 

relativistic negative absorption mechanism and because an exact 

(non-perturbation) solution of the Boltzmann equation which 

describes it has been obtained. 

2 .  The Dispersion Relation for Perpendicular Propagation in an 
Infinite Plasma in a Magnetic Field 

In order t o  introduce these negative cyclotron resonance 

absorption phenomena the theory f o r  wave propagation in an 

unbounded, uniform electron plasma in a constant uniform magnetic 

field will be reviewed. The general dispersion relation for 

sinusoidal plane wave modes characterized by the wave vector 

- k and frequency w will be specialized f o r  waves which propagate 

perpendicular to the direction of the magnetic field E&,. A class 
, 

1 of cyclotron resonance interactions that are associated with 
I 

doppler shifts due to electron motion along go are thereby 

eliminated from consideration. These interactions have been 

studied theoretically by Weibel and Harris.? They are not 

basic to the experiments described here, 

6 

Several approximations are made in reducing the dispersion 
I I 

relation to the case of interest. The plasma is considered to be 

so tenuous that collective effects may be ignored and the damping 

or growth rates considered to be small. Thus the electrons are 

independent current oscillators which interact with the fields 

but not with each other. In the limit of vanishing electron 
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density the wave reduces to the mode which propagates across go 

with its electric field polarized normal to B . The theory will 

be shown to suggest the existence of the two negative cyclotron 

resonance absorption phenomena for this mode in low density 

plasmas. Negative absorption persists even for plasmas whose 

distribution functions are isotropic in momentum space. 

-0 

A standard perturbation theory' is used to solve the set 

of equations consisting of the Boltzmann equation and Maxwell's 

equations. The part of the distribution function unperturbed 

by the small radiation fields is written fo(x) and is assumed 

to be constant in space and in time. This unperturbed distribution 

function and the magnet field % are considered to be zeroth 
order terms in the perturbation expansion. The first order 

quantities are the perturbed part of the distribution fl(x,x, t) 
and the radiation fields E1(Z,t) and g1(-r,t). 
are written 

The total quantities 

Since a relativistic effect is to be described the distri- 

bution function is written in terms of the momentum instead of 

velocity. These are related by 

E = Ymv ( 5 )  

where 
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2 2 2 *  y = ( l + p / m c )  . 
The 2; axis is fixed along the direction of  and a cylindrical 

polar coordinate system in momentum space is defined by 

(7 )  A A A 
2 = pI cos cp e + pL sin cp ey + pilez . X 

The momentum coordinates (pL,~,pI1) thus specify the magnitude 

of the momentum in a plane perpendicular to B its instantaneous 

direction in that plane and the momentum along B respectively. 

-0’ 

-0 

If eqs. (2), ( 3 )  and (4) are inserted in the Boltzmann 

equation and Maxwell’s equations and the resulting equations 

separated according to the order of the terms in the perturbation 

scheme a linear set of equations is obtained. The collision term 

o f  Eq. (1) is treated in the so-called relaxation approximation, 

e9coll = - vc(f-fo) = - vcf 1 

where the collision frequency vc may be velocity dependent. 

validity of the ordering procedure is assured if the radiation 

fields are so small that lfll << fo. 

The 

The linear equations 
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and 

are obtained. The current in Ampere's law is written directly 

in terms of the velocity moment of the distribution function 

with e < 0 as the electronic charge and no as the number density 

of the unperturbed electron plasma. The gaussian cgs system 

of units is employed. 

Equation (9 )  may be rewritten 

A 
0 2  

noting that = B e and defining the cyclotron frequency R 

for electrons of momentum 

involving Eq. (7) to show that Eq. (13) is equivalent to 

as eBo/ymc. It is a simple exercise 

This means that to zeroth order (to which order the radiation 

field6 vanish) there is no preferred direction in the plane 

perpendicular to s. 
function may be written as f (pL,pll). 

Consequently the unperturbed distribution 

0 

To progress further, it is noted that sl, B and f possess -1 1 
Fourier-Laplace transforms in the usual sense 
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provided that Im w > 0. The inverse transforms are 

If the space Fourier transforms of the initial value fields 

are written as 

and if Eqs. (11) and (12) are Fourier-Laplace transformed the 

results can be combined to give 

3 N 2 2 2 -  2 
( w  -c k )E1 + c &(&*El) = -ic& x b + iwg - 4nenoiw fld p (18) 

This will become a system of three linear equations in the 

three components of El when f 1 
of El. 
the unperturbed distribution function. To accomplish this, 

N N 

is written as a linear function 
cy 

The coefficients are, in general, functionals of fo(p), 

Eq. (lo), the linesriaed Bo1tz;mann equation is Fourier-Laplace 

transformed t o  give 

N 
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where the space Fourier transformed initial value of the perturbed 

part of the distribution function 

has been introduced. 

is equal to -n afl/i)i. 

rewritten 

The second term in the LHS of Eq. ( 1 9 )  
cy 

With this substitution Eq. ( 1 9 )  may be 

In his treatment of wave propagation in a plasma in a 

magnetic field, Bernstein notes that an integrating factor for 

this equation is 

3 

The double prime notation refers only to the angular velocity 

space coordinate and the notation 

will be used again below. With no loss of generality the wave 

vector k can be restricted to the x--8 plane. Thus with 

A A k = k, e + kHez X 
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the integration in Eq.  ( 2 2 )  is readily performed to give for 

the integrating factor 

The solution of Eq,  (21) is 

- t3] ie af 0 + - ( T x b )  * -  
WC a?' 

For electrons R < 0, and since Im w > 0 the lower limit of 

integration is chosen to be minus infinity so that the integral 

converges. The transformed, perturbed distribution function fl 

is now inserted into Eq.  (18) to obtain 

N 

where 1, defined by 

contains all the initial value terms. 
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Equation ( 2 7 )  may be expressed in matrix form as 

N 

which can be inverted to give 

where qC is the matrix of cofactors of E. 

The elements of & are obtained in terms of f (pI,p,,) by 

performing the angular integrations in the LHS of Eq. (27) .  

integration over 9’ is indicated and that over cp is contained 

- - 
- 0 

The 

m QJ 2x 
in the momentum space integration (d 3 p ( .  . .) = Ip,dp, J dp,, J dy(. . .). 

0 go 0 

A complicated series involving Bessel functions of argument 

k,vI/Q is generated. 

the reader is referred to Ref. 5 which contains the treatment 

For details concerning these integrations 

being summarized here, 

In principle one can insert Eq. (30) into the Fourier-Laplace 

inversion formula Eq. (16) to obtain an expression for gl(;,t) 
f o r  all t > 0. However, difficulties involved in such a straight- 

forward approach to the initial value problem are made obvious 

when the analytic properties of the components of & and of I 
are examined. Pathological choices of the initial perturbed 

- 

distribution function or initial fields can lead to a variety 

of singularities in the numerator of Eq. On the other hand 

the poles which occur when the denominator vanishes lend themselves 

to a simple interpretation. The values of w and of k which cause 
the denominator of Eq. ( 3 0 )  to vanish are considered to define 



the normal modes for wave propagation in the plasma medium. 

1 2  

This interpretation will be accepted and the remainder of this 

section will be devoted to finding the interesting solutions of 

the dispersion relation 

A t  this point it is expedient t o  specialize to the case of 

For perpendicular propagation (kit = 0) and for interest. 

isotropic distribution functions f (p,,pa) = fo(p) where 

p = (p, + pH2)* the elements of 
0 

2 become 

and 

R = R = Rzx = R  
X Z  YZ ZY = o  

The index n ranges over all integers between plus and minus 

infinity. The non-relativistic cyclotron frequency is written 

62, = y Q  and w = (4nnoe /m)* is the plasma frequency. The primes 2 
P 



upon the Bessel functions indicate a derivative with respect to 

the argument which in all cases is kLvL/0. 

A solution of Eq. (31) is sought for frequencies near the 

cyclotron frequency that describes transverse waves propagating 

across B These modes should reduce to the free space limit of 

electric field polarization normal to % as the plasma density 
decreases to zero. For tenuous plasmas (u C< w ) the non- 

vanishing off-diagonal elements R and R may be neglected 

and in this approximation the solution R P 0 corresponds to 

such waves. The mode characterized by 1 El is commonly 
referred to as the extraordinary wave. The other solutions 

-0. 

2 
P 

XY YX 

N 
YY 

= 0 and Rzz = 0 correspond t o  longitudinal plasma oscillations Rxx 
and to a wave whose electric field is oriented along B 

respectively. 
-0 

Another approximation is made by expanding the Bessel functions 

in powers of the small argument and retaining only lowest order 

terms. The argument kLvl/R is of the order of the ratio of the 

radius of the cyclotron orbit of  an electron to the wavelength 

of the radiation. Only the n - fl terms in the sum will be zeroth 
order in k,v,/R. 

and the electrons will be strongest near the cyclotron frequency 

and weak at cyclotron harmonic frequencies. Cyclotron harmonic 

interactions originate with the anharmonic nature of the force 

on an electron due to the finite extent of its cyclotron orbit 

in a sinusoidally space dependent radiation field. The small 

argument klvL/R is also of the order of vL/c for waves near the 

cyclotron frequency R. Thus for w - -R only the n = -1 term 

Therefore the interaction between the field8 
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need be considered and the dispersion relation for the extraordinary 

wave in an isotropic, tenuous, weakly relativistic electron plasma 

is simply 

2 It is noted that the last term in the LHS is smaller than w 

for consistency with the neglect of R 

to ignoring collective polarization effects in the medium. The 

picture of the medium as being composed of independent microscopic 

current oscillators is thereby obtained. 

and R which amounted 
XY YX 

Since the distribution function fo( pL,p,,) has been assumed 

isotropic and since the cyclotron frequency 0 or the collision 

frequency depends only upon the magnitude p of the momentum, 

Eq. (32) will be written in terms of p alone. 

variables of integration (p,e) via pL = p cos 0 and p,, = p sin 6 ,  

and noting that 

Introducing new 

'Eq. (32) becomes 

or 



3 .  ITeaative Cyclotron Resonance Absorption in an Infinite Plasma 

The dispersion relation can be solved approximately for the 

small growth or damping constant Im w; but before a solution is 

indicated the validity of the dispersion relation for negative 

values of Im w must be established. It will be remembered that 

the Laplace transforms were defined only for positive Im w. The 

dispersion relation must, therefore, be analytically continued 

into the lower half w-plane in order to define modes that decay 

in time. The necessity for the analytic continuation of the 

dispersion relation was first pointed out by Landau” for the 

case of damped electrostatic waves in a collisionless plasma. 

Enlightened discussions of this topic appear in more recent 

publications. 11 

The dispersion relations for the normal modes of electro- 

magnetic wave propagation in collisionless plasmas are difficult 

to interpret because the integrals involved have singular 

integrands. 

At some particular momentum p the electron gyrofrequency and the 

wave frequency are equal, and for undamped waves the denominator 

of the integrand vanishes. The procedure introduced by Landau 

is to interpret the integral in the Cauchy principal value sense 

for vanishingly small positive Im w, The analytic continuation 

is then straightforward. A dispersion relation is chosen for 

Im w < 0 that converges to the same expression as Im w goes to 

zero from below. However, the complicated dependence of the 

cyclotron frequency on momentum makes the mathematics involved 

in the present situation more difficult. The approach to be used 

Eq. (34) is an example if vc is set equal to zero. 
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here will be to retain the collision frequency v in the dispersion 

relation whence for IIm w1 < v, the integrand in Eq. (34) is non- 

singular for all real p. Thus for small Im w the dispersion 

relation of Eq. (34)  is its own analytic continuation into the 

C 

” 

lower half w-plane and damped modes are well defined. 

As a first approximation to the solution of the dispersion 

relation Eq. (34) the effect of the plasma is neglected and the 

free space result w = ck, is obtained. It is the zeroth order 

term in an expansion of the dispersion relation in powers of w 

as may be verified by the following procedure. 

2 
P 

Equation (34) 

is abbreviated D(w,k,) = 0 and is expanded about w = ck, to 

obtain 

or 

Inserting 

the imaginary part gives for the growth or damping rate correct 

to first order in w 

D(w,kl) from Eq. (34) into Eq. (36) and extracting 

2 
P 

An alternative expression that follows after an integration by 



parts is 

For low energy non-relativistic electrons which suffer 

collisions at the same frequency Eq. (38) can be integrated 

trivially for arbitrary fo(p) to give the Lorentzian shaped 

absorption spectrum. In this case the wave is always damped. 

On the other hand if the collision frequency depends upon the 

energy of the electrons the form of the distribution function 

is crucial and growth is even possible. 

that reveals growth for sharply peaked distribution functions 

is offered later in this chapter. 

A more detailed analysis 

For distribution functions which represent a broad range of 

relativistic momenta Eq. (37) may be used to obtain a simple result 

for Im w. The collision frequency is considered to be a constant. 

If the wave frequency ckl and the non-relativistic cyclotron 

frequency fl are fixed, the integrand may contain a sharply 

peaked resonance at some particular momentum p. 

for Im w equivalent to Eq. (37) is 

0 

An expression 

vC 
c1 2 2 '  

afO 
XU 2 0 3  

3zz0 
Im w 2:- dp P3 ap 

(ckL+ha) + vc 
0 

( 3 9 )  

If fo(p) is broad with respect t o  the width in p of 

2]-1, then Eq. ( 3 9 )  may be symbolically written 2 
C(ck,+d + vc 



Physically this states that only a narrow range of momenta 

satisfy the cyclotron resonance condition and that those resonant 

electrons cause growth or damping of the wave according to the 

sign of the slope of the distribution function at that value of 

momentum. Clearly the wave is damped if afo/ap is negative and 

it grows if afo/ap is positive. 

of the quantum mechanical requirement that higher energy states 

be overpopulated for maser action to occur. 

This is the classical analog 

In the following sections the absorption spectra for narrow 

distribution functions will be discussed. 

4. Negative Cyclotron Resonance Absorption by Weakly Relativistic, 
Monoenergetic Electrons 

In anticipation of the fact that the experiments to be 

described later have been performed upon monoenergetic electron 

beams Eq. ( 3 8 )  will be evaluated for the monoenergetic, isotropic 

distribution function 

fo(PI,P,,) = - 2 6(p-P) . 
4xp 

An electron beam is not, however,) isotropic in momentum space. 

Albeit, the absorption line shapes observed in the experiments 

will subsequently be shown to be but slightly modified by the 

anisotropic nature of the unperturbed distribution function. 



Recalling the transformation pI = p cos 0 and p,, = p sin 8 
2 and noting that p = (pl + P,,~)* it is an easy matter to show 

that the distribution function of Eq. (41) is correctly normalized, 

The calculation follows: 

m 
2 1 cos 0 d0 p dp 7 ~(P-P) = 1 

n/2 - 2a J 
4xp -a/2 0 

Inserting this delta function distribution into Eq. (38)  and 

integrating one obtains for the damping or growth constant in 

a weakly relativistic plasma 

2 2 2  The approximation 0 2: no(l - p /2m c ) has been used. 

ation and extraction of the imaginary part leads to the 

ex pr e s s ion 

Differenti- 

Imw2:- (43) 

2 where E = P /2m is the non-relativistic expression for the energy, 

The frequency deviation from exact cyclotron resonance in units 

of the collision frequency is 

2 2 6 = (-~o/vc)(l+ck,/~o-~/mc ) and (3 = (-C20/vc>(~/mc ) .  
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2 Terms have been kept to first order in e/mc . 
in a weakly relativistic plasma the factor 5e/mc2 in Eq. (43) 

is but a small correction. Neglecting it gives the cyclotron 

resonance absorption line shape in terms of the frequency variable 

6 and the parameter p alone. Thus Eq. (43)  becomes 

For vc << no 

Im w Z l +  4vc - -  
1 + 6* (1+6*)* ' 

2 
W 
P 

(44) 

This result is plotted in Fig. 1. Negative absorption is observed 

to occur for magnetic field strengths lower than the cyclotron 

resonance value if p > 3/2. 

amount of relativistic phase focusing that can occur in the 

The quantity (3 is a measure of the 

-I momentum space plane normal to 3 in a collision time vc 
phase focusing is a result of the energy dependence of the electron's 

gyrofrequencies. It produces currents associated with the second 

term in the RHS of Eq. (44)  which add to or cancel those associated 

with the first (Lorentzian shaped) term to give respectively 

enhanced absorption or negative absorption of the wave. The 

predicted absorption lineshape in Fig. 1 will be compared with 

experimental results. An experiment which explicitly illustrates 

the cyclotron orbital phase focusing effect will also be described. 

. This 

5. Negative Cyclotron Resonance Absorption by Slow, Monoenergetic 
Electrons Due to Collisions 

A class of negative absorption phenomena which owe their 

existence to the energy dependence of electron-neutral atom 

collision cross sections have often been discussed in the published 
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Fig. 1. Cyclotran resonance absorption spectra for weakly 
relativistic monoenergetic electrons for various values of 
B= (-fiO/vc) (E/mc2) . 
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literature.12 For the case of cyclotron resonance no definitive 

experiments have been performed although some suggestive results 

have been obtained. l3 

resonance absorption is particularly simple to analyze if the 

relaxations1 approximation is applied using an energy dependent 

collision frequency. l4 

line shapes which resemble those predicted in the simple theoretical 

The effect of collisions upon cyclotron 

In this research experimental absorption 

result below have been obtained. 

The most interesting cross section behavior occurs at energies 

of a few eV. 

in point. 

distribution functions given in Eq. (42) may be applied if the 

relativistic corrections are neglected and if the collision 

frequency is considered to be a function of momentum. 

is a smoothly varying function in the neighborhood of the electron 

momentum P one can write 

Atoms exhibiting the Ramsauer effect” are a case 

The growth or damping rate for monoenergetic isotropic 

If vc(p) 

After differentiation and extraction of the imaginary part the 

result 

1+(x/3 - 2 d 3  Im w = 4vc - -  
w 2 1 + 62 (1+62)2 
P 

is ,obtained. The normalized frequency deviation from exact 

cyclotron resonance is 6 - (-~o/vc)(l+ck,/~o) where vc is the 

collision frequency for electrons of momentum P. The parameter 
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I(P)/v (P) is a measure of the slope of the collision a = Pvc C 

frequency et momentum P. It determines the amount of selective 

phase randomization that occurs to produced enhanced or negative 

absorption. 

in Fig. 2 for several positive values o f  the parameter a. 

The RHS of Eq. (46)  is plotted as a function of 6 

Negative absorption at cyclotron resonance is predicted for 

a > 3. Negative absorption can also occur for OL < -3 at either 

side of cyclotron resonance. This case is illustrated in Fig. 3 .  
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11. Negative Cyclotron Resonance Absorption by a 
Weakly Relativistic Electrcn &am 

1. Formulation of the Experimental Method 

Although a general theoretical treatment of wave propagation 

in a hot plasma is most easily accomplished by an infinite plane 

wave normal mode analysis, certain problems are encountered if 

a direct experimental verification of such a theory is attempted. 

Experimental cyclotron resonance absorption spectra could be 

expected to resemble the results in Figures 1, 2 or 3 only if 

the dimensions of the interaction region were many wavelengths 

long. If, for example, a reasonable cyclotron resonance magnetic 

field strength is of the order of 2000 gauss, cyclotron resonance 

occurs at approximately 6000 hlc/sec. 

2x/kl would be 5 cm. 

meters would be necessary. Alternatively higher magnetic fields 

may be contemplated but the difficulty of obtaining stable 

monochromatic radiation sources at the correspondingly higher 

cyclotron frequencies becomes an annoying factor. Practical 

considerations seem to limit the choice of frequency to the 

centimeter wavelength microwave range. 

The free space wavelength 

An apparatus whose dimensions are several 

If one were able to generate homogeneous magnetic fields 

of the order of a few kilogauss in large regions filled with a 

suitable electron plasma, one would still be faced with the 

problem of maintaining a propagating electromagnetic wave. The 

electromagnet itself would be the primary obstacle. A direct 
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laboratory scale test of the results obtained from a free space 

plane wave dispersion relation is clearly not possible. 

A logical compromise would be to measure the spatial growth 

or decay of bounded plane waves in a plasma filled waveguide 

whose axis lies in a direction perpendicular to the magnetic 

field. Practical laboratory dimensions would limit the inter- 

action length to a few wavelengths and since the growth or 

damping rates must be small for the theoretical predictions of 

the last chapter to hold, the effect might well be immeasureably 

small. 

Without pursuing any further the objections to experiments 

on propagating waves, the experimental technique used in this 

work will be introduced, The electron gas is allowed to drift 

along through the bounded standing wave environment of a 

microwave cavity. The cavity is excited at the resonant frequency 

of a mode chosen so that its electric field lies in a plane 

perpendicular to %. 
fields and the absorption of field energy is measured using a 

conventional microwave spectrometer as the uniform magnetic 

field is swept through cyclotron resonance. 

The electrons interact with the cavity 

The electrons must interact with the cavity fields for a 

significant number of periods of oscillation. The time interval 

that they do spend in the cavity plays the role of the relaxation 

time vc O1 found in the plane wave calculation. 

for negative absorption to occur, Thus the interaction of the 
-1 cavity fields with electrons which traverse the cavity in v 

seconds and which suffer no collisions is qualitatively similar 

It must be large 

C 
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to the interaction described in the unbounded plane wave analysis 
-1 for electrons which suffer collisions every v seconds. C 

With the exception of possible transit time effects the 

absorption line shape of Fig. 1 should be experimentally observed. 

This conclusion is supported by the experimental results and by 

a calculation which treats the problem of energy absorption by 

electrons in the standing wave environment of a cavity. 

The remainder of this chapter is devoted to the relativistic 

effect. The experiment will be described in detail and a more 

precise theory for the experimental configuration used than the 

self consistent field, plane wave analysis will be offered. 

2. The Structure and Operation of the Apparatus 

The objective of the experimental design was to obtain a 

weakly relativis.tic electron beam which would drift slowly in 

the direction of a uniform magnetic field while passing through 

an evacuated microwave cavity resonator. All but a small fraction 

of the electrons' energy would be associated with rotational 

motion about magnetic field lines. The cavity was designed to be 

coupled to a microwave spectrometer which would measure the 

cyclotron resonance absorption of microwave field energy in the 

cavity by the electrons. 

A device known as a "magnetic corkscrewt'l6 was used to obtain 

the desired distribution of electron momenta from an electron 

beam. This device transforms momentum of charged particle motion 

along a magnetic field into momentum transverse to the field. 

It has been used in experimeqts on plasma confinement with moderate 
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success . 17,18 The magneti corkscrew is constructed by 100s 

winding a few turns of wire about a tube which contains the 

electron beam. A return winding placed between the turns of 

lY 

the 

first carries the current of the first back to its source. Since 

the solenoidal currents cancel, no magnetic field parallel to the 

axis of the device (at its axis) is generated. A weak transverse 

magnetic field is, however, generated because the turns are widely 

spaced. The direction of this field rotates periodically along 

the axis of the device which is immersed in a uniform magnetic 

field with its axis parallel to it. With the turns of the 

corkscrew winding spaced so that the pitch of the weak transverse 

magnetic field equals the pitch of the helical electron orbit 

for a given axial velocity in the strong axial field, the trans- 

verse energy of the electron will increase at the expense of its 

energy associated with motion parallel to the axial field. No 

more'than a fraction of the total energy of an axially streaming 

electron beam may be transformed into energy of rotation by a 

weak corkscrew magnetic field unless the pitch of the corkscrew 

winding is reduced along the tube to compensate for the reduction 

in axial velocity. In the corkscrew device used no such 

compensation was attempted. 
I 

For electrons which enter the corkscrew with no transverse 

velocity v,, and which remain in exact helical resonance with the 

perturbing corkscrew field b,, it is shown in Ref. 17 that the 

transverse velocity is always perpendicular to the transverse 

field. The equation of motion 
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(47) 

may be integrated to give the result 
I 

The integration is along the axis of the corkscrew which coincides 

with the directionof theaxial part of 2. The corkscrew used in 

the experiments was designed for 5 keV electrons. It was 

constructed with a pitch of 5.7 cm per turn and had four turns. 

The axial magnetic field for which 5 keV, axially streaming electrons 

have the same pitch is 275 gauss. 

b, ," 2.6 gauss is necessary for ten percent of the total energy 

to become rotational energy. The electrons emerge from the 

magnetic corkscrew with nearly the same axial velocity as that 

with which they entered. 

According to Eq. (48),  

Referring to the pictorial rendition of the apparatus in 

Fig. 4, the electrons are observed to enter a second region which 

contains a very uniform axial magnetic field. Its intensity is 

approximately 2070 gauss for cyclotron resonance at 5800 Mc/sec 

and near the axis of symmetry of the configuration it is uniform 

to within f0.2 gauss. This region is separated from the magnetic 

corkscrew region by a one inch thick cold rolled steel plate. 

The tube whose outer diameter is 1.05 inches and wall thickness 

is 1/16 inch passes through a 2 inch diameter hole bored in the 

steel plate. The tube and the hole in the plate are coaxial 

with pancake type solenoid windings whichsupport the axial magnetic 
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fields. A similar plate at the far end of the cyclotron resonance 

field region helps to maintain the field uniformity. 

The electrons which emerge from the corkscrew magnetic field 

region execute helical motion about converging magnetic field 

lines as they pass through the hole in the steel plate. The field 

convergence has the effect of further increasing the rotational 

kinetic energy of the electrons at the expense of their energy of 

parallel motion. In fact, if the electrons possess a large enough 

kinetic energy of rotation before they enter the increasing field 

region they are turned around by the converging field. This is 

the well known magnetic mirror effect although in this experiment 

the effect is not entirely due to the adiabatic invariance of the 

orbital magnetic moment. Only near the end of the magnetic mirror 

region where the electrons, having lost most of their parallel 

energy, execute many periods of cyclotron rotation as they traverse 

a length over which the field increases moderately is the familiar 

adiabatic condition an accurate description. l9 The dynamics for 

the case of a sharply increasing (non-adiabatic) magnetic mirror 

is somewhat complicated and has been treated elsewhere. 20 

The electrons which enter the cyclotron resonance region 

between the steel plates drift slowly in the axial direction, 

The small fraction of their total energy of 5 keV that was associated 

with the axial drift was varied by changing the current in the 

corkscrew winding. A current of 15 amperes was sufficient to 

bring the drift velocity to zero at some point in the magnetic 

mirror region thus cutting off the beam entirely. 
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Midway between the steel plates the electrons drift through 

a microwave cavity resonant at 5800 Mc/sec in the TEOll mode. 

The axis of the cavity was parallel to the tube axis and to & 
so that the electric field of the cavity mode was perpendicular 

to go. 
and parallel to its axis. These served to suppress the TMlll 

mode which is frequency degenerate with the desired TEOll mode. 

The cavity formed part of the vacuum chamber itself and coupling 

was accomplished via a microwave transparent ceramic vacuum 

window. An inductive loop coupled the cavity fields to the field 

of a coaxial transmission line that passed through a second but 

smaller (7/4 inch diameter) hole in the second steel plate. 

electron current was collected and returned to the 5 keV potential 

source by an insulated water cooled collector. 

Rods were placed in the cavity which were displaced from 

The 

The tube was constructed entirely of type 304 non-magnetic 

stainless steel except for the cavity whose walls were of OFHC 

copper. It was sectioned and joined utilizing commercially 

available vacuum flanges which form seals by compressing copper 

gaskets. All structural joints were either brazed in vacuum or 

welded in an inert gas atmosphere in accordance with recommended 

high vacuum procedures. 21 

A chamber placed immediately before the magnetic corkscrew 

housed the electron gun. The cathode used was a barium compound 

impregnated, circular tungsten disc mounted in a molybdenum sleeve. 

The disc surface faced the magnetic corkscrew and was concentric 

with the tube. 

molybdenum sleeve behind the emitting surface) were supported by 

The cathode and heater (which rested in the 



wires which passed through a vacuum flange via ceramic insulators. 

The flange was sealed to the mating chamber flange surface by 

compressing an annealed gold wire (.O25 inch) rcO" ring. 

cathode to which one heater lead was connected floated at a 

negative potential with respect t o  the grounded tube body. The 

heater current was reduced from i ts  maximum of 10 amperes to 

afford an independent control over the total current in the tube. 

The 

The tube was connected at the electron gun end to a high 

vacuum system which. maintained a pressure of 2 x 

baking for 24 hours at 4 0 O o C .  The vacuum system was mounted on 

a heavy steel cart which rolled on tracks that were parallel to 

the axis of the solenoid magnet. The tube was thus rolled into 

the magnet which had a seven inch bore. The cavity, however, 

could not pass through the two inch diameter holes bored in the 

steel plates. Consequently the plates were constructed with a 

seven inch wide removable section. The top half of the removable 

section could be lifted up and out  like a gate in a castle wall 

at the head of a drawbridge. The bottom semi-circular half could 

then be rotated around the tube and lifted out. Some dimensions 

are indicated in Fig. 4 although the drawing is not to scale. 

It will also be noted that only two of the four turns of the 

corkscrew winding are indicated. 

mm H g  after 

3 .  The Microwave Spectrometer 

The resonant frequency of the cavity is found by tuning the 

stabilized klystron used as the source of  microwave power until 

the power reflected at the single coupling port is minimized. 



If, however, the cavity contains electrons gyrating in a magnetic 

field for which the cyclotron frequency is near the resonant 

frequency of the driven cavity mode, then the response of the 

system is more complicated because the electron gas is highly 

dispersive and absorptive for frequencies near cyclotron resonance. 

Fortunately much attention has been given to the problem of 

a simple resonant circuit which interacts with a collection of 

absorbing oscillators via its own oscillating fields. 

problem is central to the interpretation of most experiments in 

the areas of radio frequency and microwave spectroscopy, In 

practice it consists of interpreting the measured change in the 

response of a resonator excited at a fixed frequency (near its 

own resonance) as a magnetic field is varied in the neighborhood 

of the value which equalizes the excitation frequency and the 

frequency of the classical or quantum oscillators which constitute 

the absorbing medium. In their early work on nuclear magnetic 

resonance at radio frequencies, Bloembergen, Purcell and Pound 

showed how the response of an RLC circuit in which the inductor 

contained the magnetically active sample gave the bulk absorption 

and dispersion of the sample directly. Their methods are 

applicable when the fields of the empty resonator are but slightly 

perturbed by the sample. In subsequent years their techniques 

have been extended to microwave frequencies by many workers. 

The 

22 

The particular type of microwave spectrometer used in these 

experiments was first described by Gordon. 23 

reflection type cavity and eliminated the necessity for a reference 

signal waveguide arm that had been used in the usual microwave 

It utilized a 



bridge circuit, A signal at the resonant frequency of the empty 

cavity was partially reflected at the cavity coupling hole. This 

reflected signal furnished a reference phase with respect to which 

small changes in the cavity reflection that occurred when the 

magnetic field was tuned to cyclotron resonance were measured. 

If the change in the amount of signal reflected due to the 

cyclotron resonance absorption of the cavity fields by the 

electrons was much smaller than the signal reflected due to the . 
under-or over-coupling necessary to provide the reference signal, 

then the total reflected signal measured on a power sensitive 

detector, as a function of magnetic field, was proportional to 

the energy absorbed by the electrons. The cyclotron resonance 

absorption spectrum could thus be exhibited directly. 

The incident and reflected signals were separated by a 

waveguide "magic T" as indicated in the schematic representation 

of the apparatus in Fig. 5 .  The detector used was a microwave 

crystal rectifier in a waveguide mount. The voltage generated 

at the crystal was displayed on an oscilloscope whose horizontal 

trace was swept in synchronism with the cyclotron resonance 

magnetic field. Isolators used to eliminate unwanted reflected 

signals, attenuators used to vary the field strength of the 

driven cavity oscillation and microwave power measuring equipment 

are not shown in Fig. 5 .  

4. The Measured Absorption and Oscillation Spectra 

The photograph of Fig. 6a shows the absorption spectrum 

displayed on the oscilloscope when the magnetic Bo was swept at 
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Fig. 5. Illustration of the experimental method. The p l o t  
shows the axial magnetic field along the tube. 
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a 35 cycle/sec rate across cyclotron resonance. Magnetic field 

increases from right to left. For  this photograph the electrons 

were accelerated through a potential of 5 keV. The absorption 

line at the higher magnetic field strength which resembles the 

plane wave prediction f o r  negative absorption by relativistic 

electrons that suffer collisions according to the relaxational 

approximation appeared only when the current in the corkscrew 

magnetic field winding was adjusted to within a narrow critical 

range. 

A purely absorptive resonance always appeared at lower 

magnetic field strengths than the characteristically relativistic 

line. It was present for any setting of the current in the 

corkscrew winding provided that there were high energy electrons 

in the tube. If the corkscrew were not operating, high energy 

electrons would spend so short a period of time in the microwave 

cavity that their cyclotron resonance absorption of cavity field 

energy would be immeasurably small. The purely absorptive 

line is therefore attributed to low energy secondary electrons 

which are emitted when high energy electrons hit the collector. 

These cold electrons presumably drift along magnetic field lines 

into the cavity and interact with the cavity fields when the 

magnetic field strength satisfies the cyclotron resonance condition 

for non-relativistic electrons. 

Further evidence for this interpretation has been obtained 

by measuring the magnetic field separation between the two 

resonances. For the data of Fig. 6a the separation of 21 gauss 

corresponded closely to the expected one percent relativistic 
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Fig .  6 .  (a) Absorpt ion spectrum f o r  5 keV e l e c t r o n s .  (b) 
Magnetic f i e l d  s e p a r a t i o n  between t h e  two r e sonances  such as 
i n  ( a ) ,  b u t  as a f u n c t i o n  o f  e l e c t r o n  e n e r g y .  
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mass increase of 5 keV electrons. This separation has been 

measured for accelerating potentials below 5 keV and is plotted 

against the potential in Fig. 6b. 

measurement the linear relationship agreed with the energy 

dependence of the mass of weakly relativistic electrons. At 

accelerating potentials less than 5 keV proper operation of the 

magnetic corkscrew required a reduction in the 275 gauss axial 

field in the corkscrew region. 

Within the accuracy of the 

For collector currents in excess of 200 microamperes the 

negative absorption of field energy by the electrons exceeded 

the energy lost t o  the cavity walls and to the coupled coaxial 
4 line. 

coefficient (- .l5) held these losses to a low enough value to 

allow the system to support self sustained spontaneous oscillation. 

The oscillation occurred for magnetic field strengths in the range 

of the negative portion of the absorption curve observed at low 

electron densities. The measured output power into the coaxial 

line was 10 milliwatts. 

The high Q of the cavity (- 10 ) and small coupling 

The collector current necessary to support a self sustained 

oscillation depended critically upon the effectiveness of the corkscrew 

magnetic field. If the corkscrew magnetic field was high but not 

high enough to cut off the beam at the magnetic mirror, little 

current was needed since the electrons remained in the cavity 

for longer time intervals. As a general rule, the larger the 

total electron gun current, the smaller the minimum corkscrew 

magnetic field strength that was necessary for the system to 

oscillate spontaneously. This feature is consistent with the 
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idea that the time interval which the electrons spend in the 
-1 cavity plays the role of the relaxation time vc 

plane wave analysis. 

used in the 

The oscillation spectrum depended significantly upon the 

total electron gun current and upon the corkscrew magnetic field 

strength. For low currents and smaller corkscrew magnetic fields 

the oscillation was localized to within a narrow frequency range. 

At higher gun currents and lower beam drift velocities the spectrum 

was broad and markedly structured, In Fig. 7 the spectra for a 

high value of total gun current and various values of corkscrew 

magnetic field strength are shown, The measurements were made on 

a microwave spectrum analyzer. Relative power is measured on the 

lograithmic scale at the left and the total horizontal frequency 

sweep is 2 Mc/sec. The accelerating potential for these spectra 

was 5 keV and the total current drawn from the cathode was 50 

milliamperes. The threshold oscillation condition was attained 

for a corkscrew magnetic field which allowed 28 milliamperes 

to traverse the magnetic mirror, As the corkscrew field was 

increased this current (measured at the collector) decreased, 

the electrons spent a longer average time interval in the cavity 

and the spectrum broadened. The character of the spectra may 

depend upon a saturation mechanism which is not well understood. 

5. A Theoretical Calculation for the Observed Cyclotron 
Resonance Interaction 

In this section cyclotron resonance absorption by an electron 

beam which traverses a cavity in a uniform magnetic field is 
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F i g .  7 .  O s c i l l a t i o n  spec t ra  f o r  var ious  s e t t i n g s  o f  t h e  
corkscrew magnetic f i e l d  s t r e n g t h .  The t o t a l  cathode 
cur ren t  i s  50 mill iamperes and t h e  cu r ren t  i nd ica t ed  i s  
the  c o l l e c t o r  cu r ren t .  The t o t a l  frequency sweep i s  2 Mc/sec. 



analyzed. A theoretical prediction is obtained for the absorption 

spectrum whose experimental measurement has just been described. 

In the calculation full advantage is taken of the boundary 

conditions imposed by the experimental configuration. These 

boundary conditions are, to summarize, the confinement of the 

time varying fields to the cavity volume and the fact that for 

electrons which have not passed through the cavity, the distri- 

bution of electron momenta is unperturbed by these fields. 

The electrons move along orbits which closely correspond to 

the helical motion of electrons in a uniform, constant magnetic 

field because in the perturbation scheme used, the cavity fields 

E and B are assumed to be small, Following a method used by -1 -1 
Dr~mrnond~~ the linearized Boltzmann equation will be integrated 

along these unperturbed orbits to arrive at a perturbed distri- 

bution function which varies smoothly between the ends of the 

cavity at z = 0 and at z = L. The electrons are assumed to 

drift in the positive z direction only hence the perturbed part 

of the distribution function fl(l,x,t) is zero at z = 0. 

if the electron beam has reached a steady state, fl(&,r,t) 

will depend upon the displacement r of the beam from the cavity 

axis only through the dependence of the cavity field amplitude 

Moreover, 

upon r. Its only time dependence will be at the frequency of 

the cavity fields. 

The calculation for f is carried to first order in the 1 
amplitude of the cavity oscillation. In an analysis of the 

perturbation scheme it is shown that the time independent 

distribution function f (1,~) may be considered unperturbed by 
0 
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the cavity fields and thus constant in z to obtain fl correct 

to first order. 

A similar perturbation scheme to that used in chapter I 

is followed here; 

The total distribution function obeys the collisionless Boltzmann 

equation 

obtained by neglecting the collision term of Eq. (1). 

Eqs. (49 ) ,  ( 5 0 )  and (51 )  into Eq. (52) one obtains 

Inserting 

If this equation is averaged over time, considering the fast 

periodic time dependence of El, gl and fl there results the 
e quat ion 

P O  (54) 



Once f 

to obtain the slow spatial variation of fo. 

the saturation effect which ultimately limits the oscillation 

is obtained in terms of fo this last equation may be used 1 
This would describe 

level of the device and determines its output spectrum when it 

is operated as a maser oscillator, 

The last term of Eq. (54) is second order in the expansion 

parameter of the perturbation scheme. The expansion parameter 

must be proportional to gl and may be chosen as the fractional 

change of momentum of an electron due to the presence of the 

small radiation fields E and g1. 

term is neglected and Eq. (54 )  is satisfied by fo(pl,pll) independent 

of position; and independent of the angular momentum space 

coordinate rp. 

of the field amplitude in a calculation for fl taken to first 

order. The calculation proceeds by subtracting Eq. (54) from 

Eq. (53) leaving rapidly varying first order terms and a second 

Thus to first order the last -1 

Consequently fo may be considered independent 

order time averaged term; 

-T 

Neglecting the second order term results in an equation for fl 

in which fo is regarded as a constant function of pL and p,,; 
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Equation (56) is subjected to some further simplification 

before inserting the explicit cavity fields for El and gl and 
solving for fl at all points on the electron beam inside the 

cavity. It is first noted that the diameter of the electron 

beam is considerably smaller than the cavity diameter. Secondly, 

the Larmour radius (radius of the cyclotron orbit) rL = p,/leBol 

is yet smaller. 

field it is less than 1 mm. The cavity fields are therefore 

For 5 keV electrons in a 2000 gauss magnetic 

sensibly constant over the diameter of a cyclotron orbit of a 

single electron. On physical grounds all terms but vll af,/as 

in the second term of the LHS of Eq. (56) are therefore neglected 

and r, the distance of an electron from the cavity axis, is 

considered to be a constant in the RHS. This approximation 

eliminates resonances at harmonics of the cyclotron frequency and 

greatly simplifies the computations. It is analogous to the 

neglect of higher order terms in the expansion of the Bessel 

functions in the plane wave calculation of chapter I. It will 

be remembered that the argument of the Bessel functions was 

k,v,/hl = klrL. 

For  the TEOll mode of a cylindrical cavity the electric 

field is solenoidal about the cavity axis. The magnetic field 

of this mode has axial and radial components. To expres Eq. (56) 



in a coordinate system (r,e,e) based upon the cavity symmetry 

would, however, be awkward. It is easier to take advantage of 

the fact that the beam is directed parallel to the cavity axis 

by using a local rectangular coordinate system whose e axis is 

parallel to the cavity axis and displaced radially from it by a 

distance r. The geometry of the situation is illustrated in 

Fig. 8 which shows that the x axis of the local rectangular 

coordinate system is oriented in the radial direction and that 

the y axis is parallel to the electric field of the cavity mode. 

Thus the cavity fields at the electron beam are written 

E = $ EIJ1(K,r) sin K,,z cos wt , 
-1 Y 

B P 6 -1 x u  1.111 K E J (K, r )  cos Kllz sin ut 

- 9 K E J (Klr) sin Kllz sin wt , z u  1 1 0  

(574 

where K, E 3.832.. ./R and K,, E n/L for a cavity of radius R and 

length L. Rewriting Eq. (56) in terms of the familiar momentum 

space coordinates of Eq. (7) and inserting the above expressions 

for the oscillating fields one obtains 

afO afo)sin cp cos Ktle sin ut] . (58) ap,, ymw (pi! a p ~  - + -  

Momentum and velocity space coordinates are related by 2 = ymv 

with y = (1 + p /m c ) . 2 2 2 9  The RHS of Eq. (58) was calculated 



Fig. 8. Coordinate system f o r  the in tegra t ion  of t he  
l inear ized  Boltzmann equation along the  unperturbed o r b i t  
of an e lec t ron .  
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af /ap for the momentum space gradient o f  fo independent 
2 0 t! 

of cp. 

The procedure introduced by Dr~mmond*~ is now used to solve 

Eq. (58) for fl. 

for solving a first order linear partial differential equation. 

The characteristic curves for the operator on the LHS of E q .  (58) 

are just the unperturbed orbits in a single particle phase 

space of an electron in the magnetic field s. 
of motion of these orbits are distributed according to fo(pL,pll). 

The equations of motion 

It is essentially the method of  characteristics 

i 

The constants 

are readily integrated to give 

The constants of integration are chosen so that these primed 
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variables become the independent variables (pl.,~,pll,z,t) when 

T = 0. It is easily verified that  

Rewriting Eq. (58) in terms of the primed variables one obtains 

- dfl = - eEIJ1(Klr) [ap afO sin(cp-Q.r) sin K 1 l ( ~ + ~ l l ~ )  cos W(t+T) 
d-r I 

where 

The limits of integration are due to the constants of motion of 

Eqs. (60) which require that 
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The factor (p, afo/apL - pL afo/ap,,) in Eq. ( 6 3 )  originates 

with the magnetic field of the cavity mode. It vanishes for 

isotropic distribution functions fo( p) and this explains its 

absence in the plane wave calculation of  chapter I which was 

carried through with the intent of showing that the growth 

mechanism persists f o r  isotropic distribution functions. Its 

effect upon the absorption spectrum to be calculated now will 

be discussed shortly. 

The quantity which has been experimentally measured is the 

average rate of absorption of cavity field energy by the electrons. 

The instantaneous rate at which energy is absorbed by an electron 

of velocity v at a point r in the cavity is e ~ l ( ~ ) - ~  . 
averaged rate of  energy absorption by all electrons in the cavity 

The time 

may thus be formally written 

-T 

Applied to the configuration of fields considered here this 

becomes 

-T 
(67)  

00 
e L 00 2n 

Jd2r n(r)J1(KLr)jds sin K,,z lpLdpL Jdcp sin cp Sapll p,E1cos ut fl. 
0 0 0 0 
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Evaluating the integrals I1 and I2 of Eqs. (64a,b) 

the result in Eq.  (63) to obtain fl and inserting f 1 
gives after performing the integrations over cp and z 

inserting 

in Eq. (67) 

The following abbreviations are used in Eq. (68): 

and 

XX cos - 2 2 
G(x) = [, - x21 ’ 

After an integration by parts Eq. (68) becomes 

At this point it is expedient to establish the physical 

significance of the various terms in Eq. (72). Beginning from 

the left the quantity p defined in Eq. ( 6 9 )  expresses the 

dependence of the absorption upon the electron density and upon 
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the amplitude of the cavity oscillation. The density varies only 

in a plane perpendicular to the cavity axis and in Eq. (69) it 

is weighted according to the radial variation of the cavity 

field energy density. The integration extends over the cross 

sectional area of the electron beam. The function G(x) defined 

in Eq. ( 7 0 )  is sharply peaked about x = 0. It is the analog of 

the Lorentzian resonance function of the plane wave analysis. 

Its precise shape is shown in the plot of Fig. 9. The variable 

x defined in Eq. (71) is the difference between the frequency 

of the cavity oscillation and the cyclotron frequency of an 

electron o f  momentum p = (PI + p,,2)* measured in units of n 

times the inverse of the time interval the electron spends in 

2 

the cavity. This establishes on an analytical basis the 

equivalence of the roles of the transit time in the present 
-1 context with the relaxation time vc in the plane wave analysis. 

Of the terms in the curly brackets of Eq. (72) only the 

quantity 1 survives in the non-relativistic limit because the 

factor multiplying the other terms (in the square brackets) is 
2 of the order of vI /vIIc. Clearly this is subject to provision 

that vI/vII does not tend to infinity. 

would remain in the cavity f o r  such long periods of time that 

the whole linearization procedure would be in doubt since the 

distribution of electron momenta would be more than slightly 

perturbed by the cavity fields. 

I 

In that case the electrons 

It is instructive to evaluate Eq. (72) for the simple 

distribution 
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The absorption spectrum for non-relativistic electrons then has 

the shape of G(x). The relativistic spectrum for P,, << P, 
2 neglecting Pll /p: relative follows from Eq. (72) and Eq. (73) 

to unityj 

a 2 2  
P13 

1-x 

The frequency deviation from exact cyclotron resonance is measured 

in terms of the variable x evaluated for the specific momenta P, 

and PII .  The absorption spectrum depends upon the two parameters 

2 2 
p, VI 

and 

w A = -  . 
Kll 

( 7 5 )  

The first represents the effectiveness of the relativistic 

phase focussing which produces the negative absorption and the 

second is the length of the cavity in free space half wave- 

lengths. 

follows that A 2 1. It is interesting to note that for large 

2 2 
+ KII For the TEOll mode K, = u2/c2 from which it 

values of A the shape of the absorption spectrum near resonance 

approaches the result 
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obtained by neglecting the magnetic field of the cavity mode 

B -1 
The general result Eq. (74), has been tabulated for a range 

of values of the parameters A and p using the facilities of the 

Yale Computation Center. Near exact cyclotron resonance (x2 < 1) 

the spectra are substantially similar to the results of the plane 

wave analysis plotted in Fig. 1, 

the absorption oscillates between positive and negative values. 

The peripheral oscillations between positive and negative absorption 

of cavity field energy are, however, severely attenuated by the 

factor G(x) which diminishes rapidly with increasing 1x1. The data 

of Fig. 6 were obtained with a cavity which was approximately three 

free space half wavelengths long. The computation of Eq. (74) 

for A = 3 and for several values of p is plotted in Fig, 10. 

For larger values of 1x1 

Comparison of the theoretical curve with the measured 

absorption spectrum shows qualitative agreement in so far as 

the central portion of the spectrum is concerned. The peripheral 

wiggles observed experimentally are, however, larger than those 

theoretically predicted. It is possible that they may be caused 

by inexact alignment of the cavity axis with the direction of 

the magnetic field 3. The measurements of Fig. 6 were obtained 
with the electron beam near the cavity axis in which case slight 

misalignment could cause the beam to cross the axis thus altering 

the peripheral shape of the spectrum. Data obtained with a 
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longer cavity ( h  4)  with the beam displaced from the axis 

exhibited no such wiggles. Indeed, they are theoretically so 

small that they should not be clearly distinguishable on the 

oscilloscope display. 

The finer details of the absorption spectrum could be I 
obscured by any spread in the distribution of momenta p,, .  

These experiments were in fact deficient in this respect since 

such a spread could easily result from radial inhomogeneities 

of the corkscrew magnetic field, Within the confines of the 

experimental configuration no practical method for measuring 

the actual distribution of parallel momenta was found. Lacking 

such information no study of the second order effects of the 

cavity fields upon the time independent distribution function 

f was possible. The validity o f  the linear analysis was inferred 

from the constancy of the shape of the absorption spectrum as 

the cavity field strength was reduced to a level too low to 

significantly perturb the electron orbits. 

0 
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111, Pulse Stimulated Cyclotron Radiation 
from Weakly Relativistic Electrons 

1. The Response of MonoenerRetic Electrons to a Pulse of 
Cyclotron Resonance Radiation 

An effect is now discussed which is related to the negative 

cyclotron resonance absorption considered in the last chapter. 

It will be shown that a system of relativistic electrons such as 

the kind which will support growing waves near cyclotron resonance 

responds to a short pulse of radiation at the cyclotron frequency 

by emitting bursts of coherent radiation some time after the 

pulse. 

The essential features of the effect are described by 

neglecting the motion of the electrons along the magnetic field, 

considering them to execute cyclotron motion about fixed centers 

of rotation in a region of uniform, constant magnetic field. 

Before the radiation pulse the electrons are monoenergetic. 

Immediately after it the energy of an individual electron depends 

upon the phase of its cyclotron rotation with respect to the 

incident radiation. The effect of the magnetic radiation field 

is neglected as is the spatial variation of the incident radiation 

field. Thus a small volume containing many electrons executing 

cyclotron motion which for a short time experience a circularly 

polarized radiation field is considered. The electric field lies 

in a plane perpendicular to the constant magnetic field and rotates 

in the same sense as the electrons at the cyclotron frequency of 

the electrons prior to the pulse. 



After the pulse the electrons' gyrofrequencies are distributed 

according to the phase of the electron momentum with respect to 

the instantaneous direction of electric field during the pulse. 

Some electrons gain energy from the pulse thus decreasing their 

gyrofrequencies and others lose energy with consequent decrease 

in mass and increase of gyrofrequency. The subsequent motion 

under the influence of the uniform, constant magnetic field 

alone produces a succession of radiation bursts. It will be 

shown that the amplitude envelope of these bursts is simply 

expressed in terms of Bessel functions and is approximately 

[J (t/T)] 

by the exciting pulse. 

2 for slight perturbation of the initial electron momenta 1 

An important approximation made in the calculation of the 

radiation emanating from a small volume containing the electrons 

is that the radiation emitted after the pulse does not affect 

the electron orbits. Thus the theory is limited to low electron 

densities where a comparison of the exciting pulse amplitude 

and maximum radiation amplitude justifies the approximation. 

The theory predicts that for weak perturbations of the electron 

orbits, about one third of the total possible coherent emission 

power into free space will be radiated during the first burst. 

The effect bears an interesting relation to negative cyclotron 

resonance absorption of a steady excitation by virtue of the phase 

focussing which causes it. The same phase focussing in momentum 

space that produces the net rotating dipole moment density in 

response to a pulse also produces currents when the plasma is 

steadily excited which can feed energy to the wave. There is, 
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however, one essential difference between the treatment of a 

steadily excited plasma in the preceding chapters and the kinetic 

theory of the electron plasma (after experiencing the pulse) 

to follow. The former involved a perturbation theoretic solution 

of the Boltzmann equation whereas the latter will involve an exact 

solution which is a trivial consequence of the Liouville theorem. 

In the theory the pulse is considered to produce an initial 

distribution function, the subsequent behavior of which is 

determined by the incompressible flow of electrons in a single 

particle phase space demanded by the Liouville theorem. 

An experiment which has provided qualitatively corroborating 

results will be described. 

2. A Kinetic Theory Calculation of the Radiation Envelope 

In this section a theory is developed which predicts the 

radiative response of a weakly relativistic ensemble of electrons 

in a uniforrq constant magnetic field to a rotating electric field, 

applied for a short time duration. The electric field rotates 

in a plane perpendicular to G .  
is suppressed and the problem is treated in a two dimensional 

momentum space defined by 

Electron motion parallel to Bo 

x=$,pcoscp+e A psincp. 
Y 

The equation of motion of an electron is written 

( 7 7 )  

with 



2 2 2 &  y = ( l + p / m c )  . 

The electric field is given as 

A A E = E(ex sin ut t e cos ut) 
Y - 
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(79 )  

and is understood not to vanish only for a short time interval 

At. 

If Eqs. ( 7 7 ) ,  ( 7 9 )  and (80) are used in the equation of 

motion Eq. (78) the result 

d A d  G - (p cos c p )  + e - (p sin cp> x dt Y dt 

A 
= a x ( R p  sin cp + eE sin ut) + e (-Rp cos cp + eE cos ut) (81) Y 

is obtained which is equivalent to 

d -iwt - (peiY) = -inpeitP + ieEe dt 

The usual symbol n for the relativistic cyclotron frequency 

eBo/ymc is used. The transformation o f  variables 

cp' = ql + Rt 

P' = P 

is now introduced. It represents a physical transformation t o  

a momentum space coordinate system (p' , y t  ) rotating with respect 

t o  the original system (p,cp) at an angular frequency equal to 

gyration frequency of the electron's motion in the original 
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system. It simplifies the solution of Eq. (82) considerably. 

Rewriting Eq. ( 8 2 )  in terms of the primed variables gives 

-i (w-n) t d (p'eiv') = ieEe dt 

as the equation of motion of an electron in the rotating momentum 

space coordinate system. 

The frequency w of the exciting electric field is assumed 

to be equal to the cyclotron frequency fl of the electrons before 

the pulse. 

short time intervals At. The implication is that the magnitude 

and phase of the momentum p are changed impulsively and that 

during At the relative phase slip between the momentum 2 and the 

electric field E (due to the change in the cyclotron frequency 

with changing p) is small. 

frequency of an electron from its value R at t - 0 is An, the 
condition for negligible phase slip during the pulse may be 

expressed as ARAt << 1. For slight perturbations of the momenta 

of weakly relativistic electrons (i.e. Ap << p << mc) the 

condition is explicitly written 

In that case the RHS of Eq. ( 8 4 )  is constant for very 

If the maximum change of the cyclotron 

2 2  
noAt << - m c  

PAP 

The pulse duration At is assumed to be small enough to satisfy 

this inequality and Eq. (84)  is integrated trivially from t = 0 

to t = At to give 
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After the pulse (t > At) the RHS of Eq. (84)  vanishes and 

p I eitP is constant in time. Thus for t > At 

54 

iTo I 
= pole + ieEAt 

The next step transforms this result for the rotating momentum 

space coordinates into the result for the non-rotating momentum 

coordinates by applying Eqs. (83a,b) once more to obtain 

-i - t 
Y p(t)eiq(t) = (poe itPo t ieEAt) e 

where 

The analysis of the dynamical behavior of a single electron 

after the pulse is concluded by writing the magnitude of the 

momentum in terms of its initial momentum coordinates. Multiplying 

Eq. ( 8 8 )  by its complex conjugative directly gives 

(P(t>I2 = Po + 2eEAtpo sin yo + (eEAt)2 . ( 8 9 )  

An expression for the power radiated by a number N of such 

electrons confined to a volume larger in dimension than the 

orbital radius and smaller than the wavelength of the radiation 

emitted is obtained from Larmor's formula25 for the total power 

radiated by an accelerated electron. For an electron in 

instantaneous circular motion at an angular velocity R Larmor's 



formula gives 

In rder t a1 ul 

IP= 

te the p 

(93) 

wer radiated by N electrons contained 

in a small volume which have been perturbed by a pulse in the 

manner described above, p in Eq. ( 9 0 )  is replaced by the 

statistically summed momentum of the N electrons: 

0 0  

The kinetic theory of the problem enters in the integration over 

momenta distributed according to f ( p ,cp,  t) after the pulse. 

Since there is no transport of electrons in position space, 

the incompressible flow of the electron gas in phase space 

demanded by the Liouville theorem 2 6 y 2 7  requires that 

f(PW ,&) ,t> P dPdY = f(Po,'p0A PodPodtpo (92) 

if (p(t),cp(t)) are related to (po,cpo) by Eq. ( 8 8 ) ,  the solution 

of the equation of motion of a single electron. Using this 

result in Eq. (91) and substituting the RHS of Eq. (88) for 

peiy together with Eq, (90) gives for the power radiated as a 

function of time 
n 
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where a ? =  
0 

2 2  2 2 2N e no Po /3m2c3 is the maximum possible coherent 

emission rate from N electrons rotating with momentum Po. 

Eq.  (93) the abbreviation AP = eEAt is also used and 

In 

2 2  2 2 2 &  y = (1 + po2/m2c2 + 2pAP sin q0/m c + (AP) /m c ) , 

It is reasonable to assume that the electron momenta are 

distributed uniformly in phase 'po before the excitation pulse is 

applied. For convenience the distribution function before the 

excitation pulse will immediately be taken as the two dimensional 

isotropic delta function distribution 

If the treatment is yet further restricted to weak perturbations 

of the weakly relativistic momentum Po such that AP << Po << mc, 

Eq. (93) becomes 

i(QotPoAP/m 2 2  c )sin cpo 
icpo 

Ip = Po I &  ficp0 (e + iAP/Po)e I (95) 
0 

The integration over cp is readily performed after expanding the 
0 

exponential term in a Bessel function series: 

2 2  00 

i(RotPoAP/m c )sin cpo 2 2 inVo e = 1 Jn(QotPoAP/m c )e 

Only the terms corresponding t o  n = 0 and n = -1 survive the 

integration over cpo and the final result is 
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where 
2 2  = m c /PoAP . 

OOT 

Equation ( 9 7 )  representing the time dependence of the amplitude 

of pulse excited radiation by N electrons localized in a small 

volume is a physically useful result only if the rest of space 

is empty and thus causes no dispersion or absorption of the 

emitted radiation. In fact Larmor's formula applies only f o r  a 

single particle in free space and the assumption in the present 

context is that the ensemble average charge acceleration of 

closely situated electrons causes the same radiation as a single 

particle of charge Ne possessing the statistically averaged 

momentum of the N electrons. If the electrons were spread out 

over a region,comparable in size with the wavelength of cyclotron 

emission the present model would be inadequate. It would not 

account for the phase difference of the excitation pulse at various 

points in the electron gas nor would it account for the interference 

of  the cyclotron radiation emitted by spatially separated groups 

of electrons. The model offered here is sufficient to illustrate 

the basic radiative behavior of pulse stimulated relativistic 

electrons in a uniform magnetic field. It is also a sufficiently 

comprehensive theoretical model for the experiment to be described 

as should become evident in the course of its discussion in the 

section to follow. 
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The current associated with the first term on the RHS of 

Eq. ( 9 7 )  vanishes near t = 0 and develops in time as a consequence 

of the relativistic phase focussing. On the other hand the 

second term involving Jo is maximum at t P 0 .  It accounts for 

the dipole moment induced immediately by the excitation pulse. 

For AP << P this term is small and the radiation intensity 

envelope is closely approximated by the first term alone, 
0 

IP M Po Jl2(t/7) . 

Experiments have been performed in an effort to observe the 

time dependence indicated in Eq. ( 9 8 ) .  

3 .  The Experimental Method 

The apparatus used to verify experimentally the above 

theoretical considerations is schematically illustrated in Fig. 11. 

The vacuum system, electron gun, corkscrew magnetic field and 

axial magnetic field configuration are substantially the same 

as used in the experiment described earlier although the region 

immersed in the uniform (h.05 percent) magnetic field & is longer. 
The electrons drift consecutively through two microwave cavities 

in this region. They are separated by a distance L = 35 cm and 

the electrons interact with their fields over a length 1 = 3.5 cm. 

The corkscrew magnetic field and axial magnetic field in 

the corkscrew region are carefully adjusted to produce a slowly 

drifting weakly relativistic electron beam in the cyclotron 

resonance region. The delta function distribution (given by Eq. 

( 7 3 ) )  which specifies one particular value of transverse momentum 
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Fig. 11. Illustration of the experimental method for observing 
pulse stimulated cyclotron radiation. 
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P, and one value of parallel momentum PI, together with the 

conditio:: PI, << P, << mc are considered to describe the beam in 

that region. As the electrons drift through the first cavity 

which is driven by an external microwave signal generator, they 

experimence the excitation pulse for a time interval ymA/P". 

This time interval is to be associated with At of the preceding 

section. After a delay time ymL/P,, (equal to the time of flight 

of an electron between the two cavities) the electrons enter the 

second cavity which functions as a sensitive receiving antenna 

for the radiation emitted by the electrons within it. This delay 

given setting of the electron beam characteristics the quantities 

t and At are fixed. The natural experimental parameter to vary 

is the amplitude of the excitation field in the first cavity 

thereby varying AP. The amplitude of the oscillation stimulated 

in the second cavity by the electrons should therefore reflect 

the AP dependence of the radiation power specified by Eq.  ( 9 7 ) .  

The cavities were designed t o  resonate in the TMOlO mode at 

6525 Mc/sec and were oriented so  that their axes of cylindrical 

symmetry were perpendicular to s. 
mode was perpendicular to & and the electron beam traversed the 
cavity diametrically. The cavities were of identical construction, 

although, for precise alignment, they were made tunable by inserting 

a tuning slug through one flat end of each. The slug, l / 4  inch 

in diameter, could penetrate the cavity to a depth of about 3 / 8  

inch along its axis providing a tuning range of 100 Mc/sec. 

vacuum integrity of the mechanism was maintained with a stainless 

Thus the electric field of the 

The 

steel flexible bellows. 
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Coupling to the cavities was accomplished through ceramic 

vacuum windows mounted exactly as for the steady state absorption 

experiment described earlier. The cavities were joined to 

sections of 1/2 inch I . D .  stainless steel pipe which connected 

to the magnetic corkscrew section via vacuum flanges. The same 

water cooled collector as described earlier was used. The entire 

assembly was fabricated of  type 304 non-magnetic stainless steel 

and all joints were brazed with copper in vacuum or welded in 

an inert gas atmosphere. After extended bakeout of the entire 

vacuum chamber operating pressures of 2 x lo-’ mm Hg were 

achieved. 

The microwave electronics consisted basically of a signal 

generator whose output power could be continuously varied by an 

attenuator, and a sensitive microwave receiver. The attenuated 

output of the microwave signal generator was fed to the first 

cavity and the receiver which consisted of a TWT amplifier and 

a crystal detector was coupled to the second cavity. The minimum 

detectable signal for this simple arrangement was 10 watts. -10 

Referring to Fig. 11 it is observed that the signal source 

used for the excitation field in cavity No. 1 was a pulsed 

magnetron and that the receiver was gated. This was done for 

technical reasons to be described forthwith. It is to be emphasized 

that the excitation pulse duration is determined only by the time 

of flight of an electron across cavity No. 1 and that the delay 

between the excitation pulse and the observation of the resulting 

cyclotron emission is due only to the time of flight of an 

electron between the cavities. The intermittently operated 
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magnetron was used because it was the only available source 

which provided the required power level. 

The receiver was gated in synchronism with the intermittent 

operation of the magnetron by applying a short rectangular pulse 

to the grid of the traveling wave tube. The oscilloscope thus 

measured the rectified output of the TWT amplifier at the same 

time during each successive magnetron output pulse. The operation 

of the apparatus therefore simulated steady state operation. 

The only difference was that instead of measuring the continuous 

output of microwave energy from cavity No. 2, it was measured 

over a short period of time. 

The magnetron pulse was approximately 400 nanoseconds long. 

Since the fields in the oavities, for which the Q was about 1600, 

do not build up too quickly on this time scale the gating of the 

receiver was crucial. The gate width could be varied between 

10 and 100 nanoseconds. The odd shape of the magnetron pulse 

amplitude envelope also suggested that care be taken to observe 

the radiation level at the same time in each repetition of the 

experiment. The recourse to gating the receiver dealt effectively 

with these problems and there were no ambiguities introduced 

by using an intermittently operated signal source. 

added that the repetition rato of the magnetron which operated 

at 6525 Mc/sec was 700 pulses/sec. 

It should be 

The experiments were performed with low current electron 

beams (- 10 microamperes) so that the TMOlO mode oscillation 

stimulated in the second cavity by the electronswasnegligible 

in amplitude compared with the externally driven oscillation in 
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the first cavity. This assured that after experiencing the 

excitation pulse the electrons streamed freely in phase space 

under the influence of B alone. Electrostatic effects due to 

the nonvanishing charge density in the beam were thereby 

minimized as well, 

-0 

4. The Experimental Observations 

A small retarding potential applied to the collector offered 

an approximate measure of the electron drift energy in the cyclotron 

resonance magnetic field region. Optimum values of the transverse 

and axial corkscrew fields were determined by minimizing the 

retarding potential necessary to repel the beam. A minimum 

retarding potential of 10 eV could be achieved. After making 

these adjustments as well as setting the cyclotron resonance 

field to exact cyclotron resonance for the particular beam energy 

used, the excitation to the first cavity was increased from zero. 

Point by point measurements of the relative amplitude of the 

oscillation induced in the second cavity as a function of the 

field amplitude in the first cavity were thereupon made, 

The data obtained with a 1.4 keV, 10 microampere electron 

beam are presented in Fig. 12a. The horizontal scale is 

proportional to the amplitude of the excitation pulse experienced 

by an electron as it passed through the first cavity. The 

amplitude of the oscillation induced in the second cavity is 

observed to have the expected decaying periodic dependence on the 

excitation pulse amplitude. For reference purposes the theoretical 

prediction of Eq.  ( 9 8 )  is plotted in Fig. 12b on a scale which 
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Fig. 12. (a) The measured radiation intensity for 1.4 keV 
electrons as a function of E, the excitation field strength. 
E is approximately 4'V/cm at the first peak. (b) The 
theoretical prediction, PaJ;(t/.r). 



allows the first experimental peak and the first theoretical 

peak to coincide. 

An approximate value for the excitation field intensity at 

the first peak was obtained from measurements of the Q, coupling 

factor and power incident upon the first cavity. For the data 

of Fig. 128 this electric field was 16 V/cm at the center of the 

cavity. In view of the fact that the impulse AP = eEAt received 

by an electron is effectively determined by the average field 

across the diameter of the cavity this figure should be reduced 

accordingly. Multiplication by 1/2 gives a reasonable estimate 

for the average field. A final correction factor, exactly equal 

to 1/2, enters as a consequence of the linear polarization of the 

electric field of the cavity mode, The electronic motion is 

coupled strongly only to that circularly polarized component 

which rotates in the same sense as the electrons. The effective 

excitation pulse amplitude E is therefore 4 V/cm. 

At = ymh/Pl,, t = ymL/P,, and t/T = 1.84.. . the energy of electron 
drift along% is calculated to be 20 eV. 

With 

No completely satisfactory explanation for the discrepancy 

between the experimentally measured and theoretically predicted 

spacing between the peaks is at hand. However, one could not 

expect the simple result Eq. ( 9 8 )  plotted in Fig. 12b to apply 

exactly for several reasons. The foremost objection is that the 

condition for the impulsive approximation used in the electron 

dynamics is not too strictly adhered to. This condition, expressed 

in Eq. (85), is equivalent to At << T.  The ratio of the cavity 

diameter to the inter-cavity distance specifies that 
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At/t = A/L = 1/10. 

the second cavity t/T = 1.84, 5.33 ,  8 . 5 3 ,  . . . etc. and the 
condition is clearly violated for peaks after the third. The 

fact that the peaks tend to disappear for At - T is consistent 

For successive radiation peaks to occur at 

with this picture. 

It is concluded that the effect has been observed, albeit, 

only to a qualitative degree of accuracy. 
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IV. Cyclotron Resonance Absorption by Low Energy Electrons 
Elastically Scattered in a Neutral Gas Background 

1. General Remarks 

With a shift in emphasis from relativistic phenomena to low 

energy collision phenomena, negative cyclotron resonance absorption 

due to electron-neutral atom elastic scattering is now discussed. 

Ordinarily collisions are regarded as a dissipative mechanism 

which causes damping of any mode of oscillation in a plasma by 

destroying the phase order of the motion of the plasma particles. 

In reality collisions can cause the growth of an oscillation in 

a non-Maxwellian plasma.2 

cyclotron resonance interaction in a tenuous, monoenergetic, 

infinite plasma of electrons in chapter I. 

This was shown for the case of the 

The analysis of chapter I assumed that collisions are 

adequately described by the simple relaxation appr~ximation’~ given 

in Eq. (8). 

to delve into the theoretical justification for this model as it 

applies to collisions between electrons and neutral atoms although 

a few words in support of its use will be said. Its foremost 

virtue is that it makes the analysis involved in the solution of 

the linearized Boltemann equation tractable. Secondly, it has the 

desired effect of disordering the phase ordered motion associated 

with first order currents in the perturbation theory used. The 

ability of the neutral atom scatterers to randomize the first 

order currents associated with electrons of different energy at 

different rates is inserted into the model by allowing the collision 

It would be beyond the intended scope of this work 
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frequency vC to be functionally dependent upon the magnitude of 

the momentum of the scattered electron. The electrons are 

assumed to be scattered elastically. 

The relaxation approximation is objectionable on the grounds 

that it usually does not conserve particle number, momentum and 

energy which are conserved in elastic collisions. A physically 

consistent treatment of binary collisions must begin with the 

Boltzmann collision integral. A connection between the Boltzmann 

collision integral and the relaxation approximation has been 

worked out by Desloge and Matthysse. 28 

appropriate relaxation frequency v is the collision frequency 

for momentum transfer. 

They point out that the 

C 

The attitude to be chosen here will be to accept the results 

of chapter I as suggestive of the existence of negative absorption 

by slow electrons due to collisions (physical inconsistencies 

notwithstanding) and to offer a comparison with experimental 

data. The same technique of microwave spectroscopy as was used 

in the study of cyclotron resonance absorption by relativistic 

electrons was used in the presently discussed study of the absorption 

by slow electrons in a low pressure neutral gas background. The 

generation of the necessary distribution of electron momenta was 

not as involved as it was in that work since nothing as complicated 

as the corkscrew magnetic field device was necessary. 

A beam of low energy electrons formed in a region of low 

magnetic drifted along converging field lines into the uniform cyclo- 

tron resonancemagnetic field region. The magnetic mirror effect 

and collisions with neutral gas atoms along the drift path 



provided a distribution of momenta between the direction per- 

pendicu1.ar to the magnetic field and the direction parallel to 

it. Thus with a significant part of the energy of the mono- 

energetic distribution of momenta associated with rotational 

motion, low field intensity in the microwave cavity and with 

sensitive detection the validity of the perturbation theory was 

assured. 

The obvious choice of background gases were the rare gases 

Argon, Krypton and Xenon whose elastic collision cross sections 

possess a Ramsauer minimum15 near 1 eV. 

these gases rise steeply for a few eV above the Ramsauer 

minimum. A multitude of papers have appeared in the last few 

years describing the radio frequency and microwave emission 

and absorption characteristics of discharge tube plasmas of these 

gases. For the particular case of the cyclotron resonance 

interaction, among the most notable are the calculations offered 

by Tanaka and Mitani2g which extend the earlier work of Bekefi, 

Hirshfield and Brown2 and of Twi8s.l 

Terumichi et a,.” reported the observation of an anomalously 

large transmission of radiation at cyclotron resonance through 

a Xenon discharge plasma and attributed it to the collisional 

growth mechanism. 

the amplification of a signal incident upon a microwave cavity 

containing a Xenon discharge in a cyclotron resonance magnetic 

field. The experiments reported in these papers are singularly 

deficient in their ability to support the theoretical work since 

the data is difficult to interpret in anything but a qualitative 

The cross sections of 

Shortly thereafter 

In a later paper’? the same authors reported 
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sense. One exception to this trend in the experimental work are 

the measurements of the radiation temperature of various rare 

gas discharges by Fields, Bekefi and Brown. 31 

In all the experimental work to date the basic shape of the 

absorption spectrum which exhibits the negative dip illustrated 

in Fig. 2 could not be resolved because a broad distribution of 

electron energies was involved. The experiments with monoenergetic 

distributions (to be described below) were performed in an effort 

to observe the dip and show that it occurs only for energies at 

which the cross section for collisions with neutral gas atoms 

increases sharply with electron energy. Only the phenomena 

associated with increasing collision frequencies was studied, 

The predictions of Fig. 3 for decreasing vc do not apply to the 

experiments that were performed. 

2. Measurements of  the Absorption Spectrum 

The apparatus was similar, with a few modifications, to the 

equipment illustrated in Fig. 4. The configuration of magnetic 

fields was exactly the same as for the energetic electron 

ab%tion experiment with the exception of the corkscrew winding 

which was eliminated. The microwave cavity, which was smaller, 

operated in the TMOlO mode at 5782 lk/sec and was oriented with 

its axis of cylindrical symmetry (and thus its electric field) 

perpendicular to %. 
diametrically. 

The electron beam traversed the cavity 

Immediately before entering the cavity the electron beam 

passed through a grid structure consisting of three parallel 
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grids in planes perpendicular to the axis of the tube. The grids 

were approximately 5/16 inch apart and the outer two were 

electrically grounded to the tube wall. The inner grid was 

supported by a tungsten wire which passed through the side wall 

of the tube via a l / 4  inch diameter glass to stainless steel 

housekeeper seal. A negative square wave potential applied 

to this grid was used to modulate the electron beam in the cavity. 

A variable retarding potential applied to a similar grid structure 

just after the cavity was used to measure the distribution of 

energy associated with motion along B 
-0. 

The grid was formed of a commercially available knitted 

tungsten wire mesh. 

tungsten wire provided a grid which would transmit 97 percent 

of the incident electron current. The mesh was sandwiched 

between circular stainless steel frames which were spot welded 

together. The frames were then mounted within the tube structure. 

Assembly of the cavity and grid structures was facilitated by 

dividing this part of the tube into separate sections machined 

from stainless steel stock. The completed sections were joined 

to form a vacuum tight chamber by welding in an inert gas 

atmosphere. Type 304 non-magnetic stainless steel was used 

throughout. 

The 1/16 inch spacing between the .001 inch 

The schematic diagram of the apparatus in Fig. 13 shows the 

microwave spectrometer and detection system which consisted of a 

TWT amplifier, crystal detector and a lock-in amplifier for 

synchronous detection of the absorption signal. The reference 

signal for the synchronous detector was derived from the 10 Kc/sec 
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negative square wave voltage applied to the beam gating grid. 

The output of the lock-in amplifier was plotted on the vertical 

scale of an X-Y recorder whose horizontal trace was swept slowly 

in synchronism with the cyclotron resonance magnetic field 

intensity B 
0' 

The absorption was measured as a function of B for various 
0 

electron gun potentials in vacuum and in the background gases 

Argon, Krypton and Helium. It was found that the best method 

for maintaining a constant low background gas pressure (usually 

less than lom3 mm Hg) was to feed gas to the system via a small 

aperture leak valve while continuously pumping the system. The 

data thus obtained is exhibited in Figs. 14 through 17 for Argon, in 

Figs, 18 through21for Krypton and in Figs. 22 and 23 for Helium. 

The numbers to the upper left of each trace denote the gas 

pressure measured directly on a Bayard Alpert type ionization 

gauge which was calibrated for nitrogen. To correct for the 

difference of the ionization probabilities of the gases used 

the indicated readings should be multiplied by the following 

factors : 

Argon: multiply by 0.85 

Krypton: multiply by 0.53 

Helium: multiply by 6.22 

These correction factors are quoted from the manufacturer's 

recommendations. 

The narrow absorption line on the right hand side of the 

spectra is interpreted as the electron cyclotron resonance 

absorption. Its observed linewidth for electrons in vacuum 
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was in better agreement with estimates of the transit time 

broadening from drift energy neasurements obtained with the 

second grid structure. In general, the average drift energy 

was between one fourth and one half of the total beam energy 

and the spread was moderately large. Fewer than 10 percent 

of the electrons in a given monoenergetic beam had less than 1 eV 

of drift energy or more than all but 1 eV of drift energy for the 

total beam energies represented in the data. 

Referring to the data for Argon, the dip in the cyclotron 

resonance absorption line is observed to be progressively stronger 

in the spectra for 7 eV, 9 eV and 10 eV electrons. The Argon 

collision cross section for momentum transfer increases monotonically 

from the Ramsauer minimum until it levels off at about 12 eV. 

Only a slight suggestion of the dip appears in the data for 12 eV 

electrons in Argon. 

The relative depth of the dip increased with pressure as it 

should have up to the point that collisions were the dominant 

broadening mechanism. At sufficiently high pressures the time 

that an electron spent in the cavity did not determine the width 

of the cyclotron resonance line. As the pressure was increased, 

the beam current was concurrently reduced from its approximately 

1 microampere value in vacuum by scattering of the electrons along 

their long drift path from the cathode. An upper practical limit 

to the background gas pressure was thus reached at about l oo3  mm Hg 
depending upon the gas used. 

The behavior of the cyclotron resonance absorption lineshape 

for Krypton w a s  entirely similar except for the fact that the dip 
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disappeared completely at 10 eV. The cross section for Krypton 

levels off at about that energy. Measurements made with a 

background of Helium at electron gun potentials of 8 volts and 

9.5 volts exhibit no dip at all. In this energy range the cross 

section for Helium is inversely proportional to the electron 

velocity and the collision frequency is, therefore, constant. 

The momentum transfer cross section information was obtained 

from the work of Frost and Phelps’2 who have combined and compared 

the measurements of many workers. 

At this point the persistent occurence of the broad 

absorption at lower values of Bo than the absorption line identified 

as due to the cyclotron resonance interaction should be discussed. 

However, no explanation of its origin is available and it would 

be premature if not impossible to argue in favor of any speculative 

guesses. Within the context of this presentation its existence 

is noted and the contention that it does not alter the identifi- 

cation of the cyclotron resonance absorption is made. 

3 .  Calculation of the.Csclotron Resonance Absorption Spectrum 

From the foregoing remarks it appears that two parameters 

determine the shape of the cyclotron resonance absorption measured 

in these experiments. The first would be analogous to the single 

parameter a = Pvcl(P)/v (P) involved in the infinite plane wave 

analysis of chapter I. The second would express the number of 

collisions that an electron might be expected to suffer during 

the time it spent in the cavity. 

from an analysis like the one offered in chapter 11, section 5 

C 

Two such parameters evolve 
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for the case of relativistic electrons in vacuum. 

For the present problem the linearized Boltzmann equation 

with the relaxational collision term is integrated along the 

unperturbed orbit of an electron as it traversed the cavity. 

The first order distribution function fl(i,r,t) is thus obtained 

and the field energy absorbed by the electron beam is calculated 

as indicated in Eq. (66). 

unperturbed by the presence of the electron beam and as in the 

calculation of chapter 11, are assumed to be those of the empty 

resonator. 

The fields are considered to be 

Since the electrons are non-relativistic the magnetic field 

of the cavity mode is neglected. The electric field is assumed 

to have a simpler spatial dependence than the actual zeroth order 

Bessel function variation of the electric field of the TMOlO 

mode. It is assumed to oscillate with constant amplitude at all 

points on the electron beam subtended by the cavity, to vanish 

at points outside the length L subtended by the cavity and to lie 

along the e direction. 
Y 

h The magnetic field Bo is parallel to 

and the unperturbed orbits are once again given by Eqs. (60). Z 

~ 
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The 

afl 
at + 

- 

linearized Boltzmann equation thus becomes 

The arguments that precede Eq. ( 5 8 )  also apply to the development 

o f  Eq. ( 9 9 ) .  Noting the parametrization of the unperturbed orbits 

in Eqs. (60) and the result in Eq. (61), the solution to Eq. ( 9 9 )  

is seen to be 
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Def in ing  n as t h e  e l e c t r o n  d e n s i t y  of  t h e  beam whose c r o s s  

s e c t i o n a l  a r e a  i s  6, t h e  average  r a t e  of f i e l d  energy a b s o r p t i o n  

by t h e  e l e c t r o n  beam i s ,  acco rd ing  t o  Eq.  ( 6 6 ) ,  

The a b s o r p t i o n  spectrum f o r  a s i n g l e  v a l u e  of pL and a s i n g l e  

v a l u e  of pll i s  

where 

7 \ = -  vcL 
vII 

and 
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The absorption spectrum H(x) possesses the following 

properties : 

1. It exhibits the dip at cyclotron resonance. 

2. It reduces to the Lorentzian type line shape when 

collisions dominate over transit time effects. 

3. In the absence of collisions it reduces simply t o  

sin2 ( x/2 I/( x/2) 2. 

In conclusion it is noted that the condition for the onset of 

negative absorption at cyclotron resonance is 

which can be solved for 7 if a 2 2 .  
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